酿酒酵母Saccharomycescerevisiae-亚硝酸钠滴定液(0.05mol/L)-耐冷节杆菌
在药物研发方面,重组人FcεRIα可用于筛选能够阻断IgE与其受体结合的药物。
在基因编辑领域,CRISPR-Cas9技术已经成为一种革命性的工具,广泛应用于生物医学研究、疾病模型构建和基因治疗。NLS-Cas9-EGFP Nuclease 是一种经过优化的Cas9核酸酶,通过融合绿色荧光蛋白(EGFP)和核定位信号(NLS),不仅提高了基因编辑的效率,还为实时监测和可视化研究提供了强大的支持。 融合蛋白的特性 NLS-Cas9-EGFP Nuclease 是通过基因工程技术将Cas9核酸酶、核定位信号(NLS)和增强型绿色荧光蛋白(EGFP)融合而成的。NLS确保Cas9能够高效地进入细胞核,与基因组DNA相互作用;而EGFP则为实时监测和可视化提供了可能。这种融合蛋白的设计使得研究人员能够在活细胞中实时观察Cas9的定位和动态变化,从而更好地理解基因编辑过程。 在基因编辑中的应用 NLS-Cas9-EGFP Nuclease 在基因编辑中具有广泛的应用。它可以用于基因敲除、基因插入、基因修复等多种操作。通过设计特定的向导RNA(gRNA),研究人员可以将Cas9引导到目标基因位点,实现精准的DNA切割。
它属于 CC 趋化因子家族,参与调节多种免疫细胞的迁移和激活。
成纤维细胞生长因子4(FGF-4)是成纤维细胞生长因子(FGF)家族的重要成员,广泛参与细胞增殖、分化、迁移和存活等过程。FGF-4在胚胎发育、组织修复和癌症发生中发挥着关键作用,是生物医学研究中的重要对象。 FGF-4的结构与功能 FGF-4是一种小分子多肽,由210个氨基酸组成,具有高度的保守性。它通过与成纤维细胞生长因子受体(FGFR)结合,激活一系列细胞内信号通路,如Ras-MAPK、PI3K-Akt和PLC-γ通路,从而促进细胞的增殖和分化。FGF-4还能够调节细胞外基质的合成和重塑,对组织的形成和修复具有重要作用。 在胚胎发育中的作用 FGF-4在胚胎发育过程中发挥着关键作用。它能够促进细胞的增殖和迁移,对器官的形成和发育至关重要。例如,在胚胎干细胞(ESC)中,FGF-4能够维持干细胞的自我更新能力,同时促进其向特定细胞类型的分化。此外,FGF-4还参与神经系统的发育,对神经细胞的增殖和分化具有重要影响。 在组织修复中的作用 FGF-4在组织修复和再生中也发挥着重要作用。
在肥胖研究中,脂联素水平通常与肥胖程度呈负相关。
重组小鼠 ENPP-2 蛋白(Recombinant Mouse ENPP-2 Protein)是一种重要的酶类蛋白,属于胞外核苷酸焦磷酸酶/磷酸二酯酶家族(ENPP)。ENPP-2 在细胞信号传导、炎症反应和肿瘤生物学中发挥着关键作用,其研究对于理解相关疾病的机制和开发治疗策略具有重要意义。 ENPP-2 的生物学功能 ENPP-2 是一种分泌性酶,主要作用是水解胞外 ATP 生成 ADP 和焦磷酸盐(PPi)。这一过程在细胞信号传导中至关重要,因为 ATP 是一种重要的胞外信号分子,而 ENPP-2 通过调节 ATP 的水平,影响下游信号通路的激活。例如,ENPP-2 生成的 ADP 可以激活 P2Y1 受体,进而调节细胞的增殖、迁移和凋亡。 此外,ENPP-2 生成的焦磷酸盐(PPi)在骨骼发育和矿化过程中也发挥重要作用。PPi 是一种有效的矿化抑制剂,能够调节骨骼的形成和重塑。因此,ENPP-2 在维持骨骼健康和预防骨质疏松症中具有潜在的应用价值。 ENPP-2 与疾病的关系 ENPP-2 的异常表达与多种疾病的发生和发展密切相关。
.jpg)
它广泛应用于分子克隆、基因工程以及高通量测序(NGS)文库构建等领域。
Abz-FR-K (Dnp)-P-OH 是一种常用于研究蛋白酶活性的荧光肽底物。它由荧光团Abz(邻氨基苯甲酰胺)、肽链FRK和猝灭基团Dnp(2,4-二硝基苯酚)组成。这种结构设计使其在蛋白酶活性检测中具有独特的优势。 在正常状态下,荧光团Abz与猝灭基团Dnp紧密相连,荧光被猝灭,因此无法检测到荧光信号。当蛋白酶作用于肽链FRK时,肽键被水解,荧光团Abz与猝灭基团Dnp之间的连接被切断。此时,荧光团Abz的荧光不再被猝灭,从而能够发出强烈的荧光信号。这种荧光信号的变化可以被荧光光谱仪等设备检测到,从而实现对蛋白酶活性的实时监测。 Abz-FR-K (Dnp)-P-OH 的荧光信号具有较高的灵敏度和特异性。其荧光强度与蛋白酶的活性呈正比关系,因此可以通过荧光强度的变化来定量分析蛋白酶的活性。此外,由于荧光信号的检测是非破坏性的,可以在同一反应体系中进行多次测量,从而实现对蛋白酶活性的动态监测。 这种荧光肽底物在生物化学和分子生物学研究中具有广泛的应用。例如,在研究蛋白酶的催化机制、抑制剂筛选以及酶动力学分析等方面,Abz-FR-K (Dnp)-P-OH 都是一种非常有用的工具。
.jpg)
Biotinylated Mouse BCMA还可用于开发基于BCMA的生物传感器。
VEGF165(血管内皮生长因子165,小鼠)是VEGF家族中研究最为透彻的成员之一,它在血管生成、组织修复和胚胎发育中发挥着至关重要的作用。由于小鼠在生理和病理机制上与人类有许多相似之处,VEGF165(小鼠)成为研究血管生成和相关疾病的重要模型。 结构与功能 VEGF165由165个氨基酸组成,是VEGF家族中活性较高的成员之一。它主要通过与血管内皮细胞表面的VEGFR-2受体结合,激活下游信号通路,从而促进血管内皮细胞的增殖、迁移和存活。VEGF165在血管生成过程中起着核心作用,特别是在胚胎发育和组织修复过程中,它能够刺激新生血管的形成,为组织提供必要的营养和氧气。 血管生成与组织修复 VEGF165在血管生成和组织修复过程中起着至关重要的作用。在伤口愈合过程中,VEGF165能够刺激血管内皮细胞的增殖和迁移,加速新生血管的形成,从而为伤口愈合提供必要的营养和氧气。此外,VEGF165还能够促进神经再生,对神经损伤后的修复具有潜在的应用价值。 疾病研究与应用 VEGF165的异常表达与多种疾病的发生发展密切相关。
在生物医学研究中,PDGF-AA 广泛应用于组织工程、再生医学和创伤修复等领域。
Oligo(dT)₂₅ mRNA磁珠是一种基于磁珠分离技术的高效工具,专门用于从总RNA或细胞裂解液中快速纯化mRNA。其核心原理是利用磁珠表面修饰的Oligo(dT)₂₅序列与mRNA的poly(A)尾特异性结合,通过磁场分离和洗涤步骤,最终获得高纯度的mRNA。 工作原理 Oligo(dT)₂₅磁珠表面修饰了生物素化的Oligo(dT)₂₅序列,这些序列能够特异性结合mRNA的poly(A)尾。当样本与磁珠混合后,mRNA通过碱基互补配对与Oligo(dT)₂₅结合。随后,通过磁场将磁珠与溶液分离,去除杂质后,用洗脱液将mRNA从磁珠上洗脱下来。 优势 高纯度:提取的mRNA纯度高,适合多种下游实验,如RT-qPCR、cDNA文库构建、高通量测序等。 快速高效:整个提取过程仅需15分钟,操作简便。 无需洗脱:提取产物中的磁珠可以不洗脱而直接用于下游实验。 可重复使用:磁珠可再生并多次使用,降低了实验成本。 注意事项 防止RNase污染:操作过程中需使用无RNase的塑料制品和枪头。 磁珠保存:磁珠应避免干燥,使用前需充分混匀。 裂解液处理:样本裂解时需快速操作,避免RNA降解。
上海保藏生物技术中心是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的化工中汇聚了大量的人脉以及客户资源,在业界也收获了很多良好的评价,这些都源自于自身的努力和大家共同进步的结果,这些评价对我们而言是**好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海保藏生物技供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!
-
玫瑰色贝尔氏菌SHMCCD71379=DSM23312-金针菇(毛柄金钱菌、冬菇)SHMCCD697 -
红蜜篮状菌-棘孢小单孢菌SHMCCD59876=HBUM49404-土壤节杆菌 -
酿酒酵母SHMCCD55104-波曲热多孢菌SHMCCD58400=ATCC35864=BCRC12 -
费氏丙酸杆菌-栖土光黑壳SHMCCD64685-Pantoeastewartiisubsp.stew -
球形赖氨酸芽孢杆菌SHMCCD50878ivcas7.00352-SDS-PAGE下层胶预混液(8% -
网状镰孢SHMCCD63019-拱状灵芝-中国农大湖积物杆菌 -
维涅兰德固氮菌SHMCCD73107-人工唾液(Greenwood)-SHMCCD63057 -
乳明串珠菌ATCC19256-R1601发根农杆菌AgrobacteriumrhizogenesR1
最新更新
- 玫瑰色贝尔氏菌SHMCCD71379=DSM23312-金针菇(毛柄金钱菌、冬菇)SHMCCD697
- 红蜜篮状菌-棘孢小单孢菌SHMCCD59876=HBUM49404-土壤节杆菌
- 酿酒酵母SHMCCD55104-波曲热多孢菌SHMCCD58400=ATCC35864=BCRC12
- 费氏丙酸杆菌-栖土光黑壳SHMCCD64685-Pantoeastewartiisubsp.stew
- 球形赖氨酸芽孢杆菌SHMCCD50878ivcas7.00352-SDS-PAGE下层胶预混液(8%
- 网状镰孢SHMCCD63019-拱状灵芝-中国农大湖积物杆菌
- 维涅兰德固氮菌SHMCCD73107-人工唾液(Greenwood)-SHMCCD63057
- 乳明串珠菌ATCC19256-R1601发根农杆菌AgrobacteriumrhizogenesR1
- 丛枝菌根-Glucagon-Like Peptide (GLP) I (7-37)-香菇SHMCCD
- 酿酒酵母SHMCCD54711-海洋咸海鲜球菌-改良Gomori三色染色液
推荐阅读
- 玫瑰色贝尔氏菌SHMCCD71379=DSM23312-金针菇(毛柄金钱菌、冬菇)SHMCCD697
- 红蜜篮状菌-棘孢小单孢菌SHMCCD59876=HBUM49404-土壤节杆菌
- 酿酒酵母SHMCCD55104-波曲热多孢菌SHMCCD58400=ATCC35864=BCRC12
- 费氏丙酸杆菌-栖土光黑壳SHMCCD64685-Pantoeastewartiisubsp.stew
- 球形赖氨酸芽孢杆菌SHMCCD50878ivcas7.00352-SDS-PAGE下层胶预混液(8%
- 网状镰孢SHMCCD63019-拱状灵芝-中国农大湖积物杆菌
- 维涅兰德固氮菌SHMCCD73107-人工唾液(Greenwood)-SHMCCD63057
- 乳明串珠菌ATCC19256-R1601发根农杆菌AgrobacteriumrhizogenesR1
- 丛枝菌根-Glucagon-Like Peptide (GLP) I (7-37)-香菇SHMCCD
- 酿酒酵母SHMCCD54711-海洋咸海鲜球菌-改良Gomori三色染色液
猜你喜欢
- 肉桂色链霉菌-酿酒酵母SHMCCD55615-栖果刺盘孢SHMCCD62521
- 琥珀毛壳(基因组DNA)-谷氨酸棒杆菌Ⅴ型-季氏毕赤氏酵母Pichiaguilliermondii
- 矮小青霉SHMCCD66791-黄曲霉SHMCCD63687-斯高特白冬孢酵母SHMCCD53551
- 科罗拉多拟无枝酸菌SHMCCD59492-球形赖氨酸芽孢杆菌SHMCCD51792ivcas7.00
- 大肠埃希氏菌SHMCCD52536-枯草芽孢杆菌WB800-CPDA-1抗凝粉剂
- 腐皮镰孢SHMCCD65601-PT2-Venus-黄孢原毛平革菌
- 解脂亚罗酵母SHMCCD57490-香菇(秋栽7号)-土星拟威尔酵母土星变种SHMCCD56981
- 枯草芽孢杆菌SHMCCD53044-甲基橙指示剂(3.1-4.4)-产碱杆菌ACCC01730
- pAC149-pCR8-dCas9VP160-燕麦镰孢-嗜盐小单孢菌
- 丽春红S染色漂洗液-SHMCCD65044-酿酒酵母SHMCCD55145
关注我们

菌种资讯
藻类资讯
细胞资讯
基因资讯
质粒资讯
瑞楚生物
保藏微生物
上海生物网
网站首页